The Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics brings together astronomers, computer scientists, information scientists, librarians and visualization experts involved in the development of tools and systems to study and enable the next generation of online astronomical research

Current projects include research on the development of systems that seamlessly integrate scientific data and literature, the semantic interlinking and annotation of scientific resources, the study of the impact of social media and networking sites on scientific dissemination, and the analysis and visualization of astronomical data and research communities. 

 

Recent Publications

Udomprasert P, Goodman A, Sunbury, S., Zhang ZH, Sadler P, Dussault M, Lotridge, E., Jackson J, Constantin A. Visualizing Three-Dimensional Spatial Relationships in Virtual and Physical Astronomy Environments, in International Conference of the Learning Sciences. Boulder, CO ; Submitted.Abstract

We give a brief overview of some key features of WorldWide Telescope and its Ambassadors Program, and we describe two goals for expanding the program in the coming year: scaling up training efforts; and developing “plug and play” Visualization Lab modules that teach key Earth and Space Science concepts to students while emphasizing important scientific processes and skills. We discuss several different ways that members of the astronomy education and outreach community can incorporate WWT-based materials into their work.

Pepe A, Goodman A, Muench A, Crosas M, Erdmann C. How Do Astronomers Share Data? Reliability and Persistence of Datasets Linked in AAS Publications and a Qualitative Study of Data Practices among US Astronomers. PLoS ONE [Internet]. 2014;9 (8) :e104798. Publisher's VersionAbstract

We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it); unfamiliarity with options that make data-sharing easier (faster) and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date

Recent Presentations